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C O R R E C T N E S S  O F  A N  A S Y M P T O T I C  S O L U T I O N  

F O R  L A M I N A R  F L O W  O F  A F L U I D  B E T W E E N  T W O  R O T A T I N G  D I S K S  

E. V. Semenov  UDC 66.067.5 

The present paper deals with an asymptotic solution as a power series in a nondimensional radial 
coordinate for the divergent flow of a viscous incompressible fluid which is induced by a linear source located 
at the axis of rotation of two coaxial disks. Convergence of the solution is estimated. 

The characteristic properties of the flow of a condensed fluid in the space between two rotating 
equidistant disks or cones are of great importance in applied mechanics for analysis of the kinetics of these 
flows in various centrifugal pressure devices, separators, centrifuges, etc. 

The development of fluid flow in the clearance between two rotating equidistant disks or cones has been 
investigated in [1-6]. Note that,  as is often done for divergent flows, in the analysis of the causes of flow by a 
point or axial source the expansion of the desired solution into an inverse power series of a nondimensional 
radial coordinate is often used as an effective quantitative method. For an axially symmetric  flow regime. 
this method offers the possibility of reducing the original problem to a one-dimensional one in the transverse 
coordinate. In this case, the solution is a parametric function of the radial coordinate. This makes it possible 
to reduce a boundary-value problem, for example, in an unbounded domain for the Navier-Stokes equations, 
to an infinite system of linear inhomogeneous ordinary differential equations. 

The problem of fluid flow between two unbounded disks (planes) rotating with the same or different 
angular speeds can be conveniently considered in the cylindrical coordinate system rv~z fixed to one of the 
disks. In what follows, we assume without loss of generality that the disks and the fluid are suddenly driven 
to rotation with a constant angular velocity w (Fig. 1). 

Let u, v, and w be the radial, relative circumferential, and transverse components of the fluid velocity 
V, p is the pressure, p is the density, and v is the coefficient of kinematic viscosity. If the origin of coordinates 
is located at the midpoint between the two disks at the axis of rotation, then the following non-slip boundary 
conditions can be used for the fluid at the disk walls: 

u = v = w = O  for z = = l = h / 2 .  (1) 

Here h is the distance between the disks. In addition, the condition 

. V = 0  for r---*c~ (2) 

must be satisfied. 
From here on, we use nondimensional quantities, choosing l = ~ / v / w  as the characteristic length and 

U = ~ as the characteristic velocity [5]. In this case, r = I f ,  z = I x ,  u = Uf i ,  v = UO, w = UffJ, ~ = U2(~, 

and �9 = p / p  - w 2 r 2 / 2 .  

Below, if we drop all bars, then the equations of motion and continuity [7] for a steady axially symmetric 
flow of a viscous incompressible fluid in nondimensional form are written as 

Ou Ou v 2 0 r  02u 0 [10(ru)] 
J' 
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Fig. 1 

(1) by 

u 0 (rv)+wOV 02v 0 [ ! 0 ( r v ) ] ,  
- = - 2 u +  O-~-~z2 + (3) r or U~ ~ - g - ~ j  

u-~r  + W o z  Ox + -0-s 2 + - r - - + - -  - 0 .  . . . .  r "~r Or / Or Oz 

Since the flow-velocity field is symmetric  about the plane x = O, we can replace the boundary conditions 

Ou Ov 
Ox--  ox - -O '  w = 0  for r , = 0 ;  

u = v = w = O  for x = # ,  # = A / 2 ,  A = h ~ r  

Taking into account (2), we seek the functions u and v as the series 

~(r,r,) = ~,l(r,)/r + ~ ( r , ) / r  2 + . . . ,  v(r ,~)  = vl(r,)/r + ~2(r,)/r 2 + . . . .  

In turn, we have 

(4) 

(5) 

(6) 

~(r,  r,) -- ~ , ( r , ) lnr  + ~2(r,)/r + . . . .  (7) 

In accordance with (4)-(6), we have the following boundary conditions for u~ and vn (n = 1, 2, . . . ) :  

Ou.  Or,, 
= = 0  for r , = 0 ;  (8) 

Or, Or, 

u , ~ = v n = 0  for x = k t .  (9) 

We write the condition of fluid rate Q in nondimensional form 
/J 

q = 2~r/urdx,  q = 0.SQU-11-2. (10) 
o 

Taking into account (6), by virtue of (10) we obtain for un 
t t  

/ ul(x) dx = q/(27r); (11) 
0 

tt 
/ u , ( x )  dx=O,  n = 2 , 3 ,  . . . .  (12) 
o 

In integrating the last equation of system (3) over z, we obtain 
z to/ 

w - urdz. 
r Or 

o 
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In accordance with (10), the boundary  conditions (4) and 
account (6), we have 

x 2: 

w(r ,~)  = -~ u 2 ( x ) e z  + -~ ~,3(x)ex + . . . .  (13) 
0 0 

Subst i tu t ing expansions (6), (7), and (13) into the first three equat ions of sys tem (3), we write  

- +~+. . .  ~-+-~+...  + f  7 + 7 + . . .  dx + ~ +  - 7  + ~ +  

(~ ) "  ,3  ~4 ~1 + ~2 v2 u x 
- r ~ - 4 - . . . §  + ~ - ~ + " "  § 2 4 7  7 u 2 § 2 4 7  (14) 

u2 2v3 2 u 3  . .  dz(V'_.l -(~+~+--.)(~+~+...)+I(~+7+ .) , .  +.-.) 

(~ ~ ) v~, ~ , . ~  ~.4 
= - 2  + ~ + " "  + - - r  + ~ - ~ + ' ' "  + - 7 -  + r'g v 3 + . . . , "  (15) 

z 

U2 "~ f / l - 3  2 - 4  . §  fU2 2U3 d x f U 2 §  
- ( ~ + 7 + . . .  ; J t ~ - ~ + 7  -~+.  .)~= J v + 7 + . . . )  ~ 7 +. �9 -) 

t~ o 

, u S 2u~ ] / 1 . 3  2 2 . 4  2 ) 
= - - r 2 4 7  ~ - - - ~ u 2 +  r~ u 3 + . . ,  dx. (16) 

0 

Here primes denote  derivat ives with respect  to z. We group 
obtain,  from (14)-(16) ,  the  following system: 

e)l = C1]2 = const; (17) 

, q  + 2,,1 = ~1,  ,,7 - 2,,1 = o, ~'2 = o, ,~2 = - c ~ d 2 ;  (is) 
tt~ 4- 2V 2 ---~ --(~2, V~ -- 2it 2 "-- O, ~3 = - C 3 / 4 ;  (19) 

u~ + 2 ~  = - 2 ~  - ~ - q ,  ~ - 2 ~  = o, -~'~ + ~'~ = o, ~ = ~s - c~/6;  (20) 

u~ 4- 2v4 ---- --3~4 - -  U l U 2  - -  2UlU2 -- 2VlVS ,4- 1 �9 3u2, 
, (21) 

i �9 v ~ - 2 u 4 = - u i v s - v ~  u 2 d z , - 3 v s ,  - ~ , 4 , 2 u ~ = 0 ;  
o 

x 

,, , I  , I  u s + 2v5 = - 4 r  - 3UlU3 - 2u22 - U3Ul + u s us dx + 2u 1 u3 dz - 2VlV3 - v 2 + 2 . 4 u 3 ,  

o o (22) 

" ' i  ' i  i v 5 - 2u5 = - 2 U l V 3  - tt2v2 -4- v 2 us dz  + 2 v  1 u3 dx - 2  �9 4v3, -ff)~ -4- 3u4 -4- 1 �9 32 u2 dx = O; 
o o o 

,, , i  ~ , i  ~ d~ 2dx - 2 V l V 4 -  2vsv3 + 3  �9 5u4, U 6 § = --5(I)6 -- 4UlU4 --3u2u3--2u3us--u4ul§ 1 4dx§ 3 dx+u 

g z 

" i S i vs - 2us = -3UlV4 - 2u2v3 - u3v2 -4- vt3 u2 dx + 2v' 2 u3 dz -4- 3v~ u4 dx - 3-  5v3, (23) 

(5) for w are satisfied. In this case, taking into 

terms with the same . r -dependent  factors and 
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27 12 .r .E 

-2"4Ul/u3dx-l'3u2/u2dx +u2/u2dx=-~lT+4u;-1-2"42/u3dx; 
0 0 0 0 

Since it follows f rom s y s t e m  (17) - (23)  and b o u n d a r y  cond i t i ons  (3) and (9) t h a t  even a p p r o x i m a t i o n s  

in the  veloci t ies  u2m and  v2m are  ident ica l ly  zero,  the  s y s t e m  for o d d  a p p r o x i m a t i o n s  is of the  fo rm 

n--2  n--3 x n - I  t "  
t tn  -1 t- 2Vn = --( r~ l )  (I)n - -  Z Z U i t t n - - l - i  -1- Z ' t / - -  " - " ~u,,_2_i ui+l dx ~ viv,,-1-i + (n - 3)(n - 1)u,~-2; (24) 

i i t~J i 

n -3  n-3  z 
II �9 / 

V n - -  2 U n  = - -  Z Zt tn- -2- - iVi+l  -1- Z " ! z v n _ 2 _ i  ui+x d x  - ( n -  3)(n  - 1)Va-2; (25) 
i i # 

n - - 4  z n - - 5  z 

i t~ i 

:E 

/ = --~bn+ 1 + (n - 2 )un_  1 '  + (n -- 4 ) (n  -- 2) 2 u n - 3  d x .  (26) 

Here  n = 2rn + 1, i = 2k + 1, whe re  k and  m = 0, 1, 2, . . . .  S u m m a t i o n  is p e r f o r m e d  over  pos i t ive  subscr ip ts .  

Fol lowing f rom  (25) a n d  (26),  we ob t a in  

n - - 3  x 

1 [ .  ( v' f ) ] (27) u. = ~ v. + y~ i u._2-~vi+~ - . - 2 - i  u i + l  d z  + ( n  - 3 ) ( n  - 1 ) ~ . - 2  ; 
i----1 /~ 

Ca "f ] v .=  2(,~_U+(,~-3)u._2+(n-5)(,~-3)2 ,,._4~dx 
0~t 

a - - 5  x x a - - 6  z z 

- z 

i o ~ i 0 

Thus, by virtue of (27) and (28), instead of (24) we have 
IV Va + 4on = Ca + fa(x),  (29) 

w h e r e  Ca is a constant and f l  = 0; 
n - - 2  n - - 3  z tt [ ( j ) fa(x) = - 2  ~__,(viv.-1-i + iu iu . -1- i )  + ~_, i - (ua-2-ivi+l)" + v._2_i Ui+ldx 

i i # 

z n - - 6  z z 

+2u'._2_i/ui+,dx] + 2(n-I)y~(n-5-i)fu._4_ifiui+,d, dx 
/~ i o 

n - - 5  z z z z 

fu fu 3)v._ 2 2(n l)(n 3)(n-5)ffu._4d~dx. (30) - 2 ( n - 1 ) ~ i ( i + 2 )  n-4-i  i + t d ~ d x - ( n - 1 ) ( n -  " - - - 
i o ~ o ~  

From (8), (9), and (27) and based on the boundary conditions for vn we obtain additionally 
t t  vm(O) = O, va(~) = O. (31) 

In addition, according to (12) and (27) we have 

v ' (#)  ' (32) 'On, , . 
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Here 

n - 3  t* ,u z t~ 

( I  i '  I (,, ' / , . . . ( v )  = ~ i - ~ , . - ~ - i ~ , + i  d .  + v , ,_2_ ,  ~ i + ,  - - - 
I 0 0 ~ 0 

(33) 

We write the solution of Eq. (29) which is subjec t  to the boundary  conditions (8), (9), (31), and (32) 
in the following form [8]: 

z 

Yn(X)  = C n l Y l ( Z )  -~- . . . --~ Cn4Y4(Z)  --~ S Y4(X - ~)[Cn "~ f n ( ( ) ]  d ~ .  

0 

Here 

(34) 

yl = cosh x cos x, y2 = (cosh x sin x + sinh x cos z ) /2 ,  

y3 = sinh x sin x /2 ,  y4 = (cosh x sin z - sinh z cos z ) /4 .  

In this case, Cn2 = Cn4 = 0 according to (8) and (31). Instead of (34), we have 

(35) 

Here 

v ,  = ~,~ + vn,. (36) 

;g 

~,~ = C n t y t ( x )  + Cn3y3(x) + C,[1 - y l (x) ] /4 ,  Vn, ---- f y 4 ( x  - ~ ) f , ( ~ ) d 6  (37) 
o 

Note that ,  according to (9), (31), and (32), we obta in  the following sys tem to de te rmine  the coefficients 
Cnl,  C,3,  and C . :  

CnlYl+Cu3y3+Cn(1  -- y l ) / 4  -- ,/4, 
Here 

-4Crdy3+Cn3y l  +Cny3 = J2, --4CnlY4+Cn3y2q-Cny4 = ,/3. (38) 

Here 

,.,(k).. = f w<(:~ - ~ ) f . ( ~ )  d~, 
o 

The solution of sys t em (38) is as follows: 

C . i  = A . I / A ,  

2 ~ I I  I I �9 --Vn,, ,]3 = --Vn, + Vn**, 

Yk = Yk(l~), k = 1 , 2 , 3 , 4 .  

(39) 

(40) 

C.:! = A.:i/A, 6'. = A./A. (41) 

where 

A -- YlY4 -- Y2Y3 ---- (sin 2/z -- sinh 2#) /8 ;  

,x.~ = (y~y4 - y2y3)J4 + [y2(1 - y l ) / 4  - y3y4]J2 + [y~ - y , ( t  - y i ) / 4 ] J 3 ,  

A . 3  = y4J2 - y3J3, A ,  = 4 ( y l y 4  - y2y3)J4 - (y ly2  + 4y3u4)g~ + (y~ + 4y~)J3.  

In accordance with (11), (37), (40), and (41), for the  first approximat ion we have 

UI(X) = Aiyl(x) + Biy3(x) + CI/4; 

Ul(Z) = v~'(z)/2 = - 4 A i y 3 ( z )  + B ly l (X) ,  ~ ,  = C1/2, 

(42) 

(43) 

(44) 

(45) 

A, = Cl l  - C1/4, B, = C13, Cll  = q(sinh2# + cos 2 # - cosh # cos #) / (87rA),  

C13 = - q s i n h p  sin # / (4r rA) ,  C1 = q(cos 2/~ + sinh 2 # ) / ( 2 r A ) .  
(46) 
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X l  a q= lO  s 

/ /  / / / / / / / / / / / / /  / / / . ,  / / /  

/ ~ 1 r=251 

~ 1 = , r  

0 50 I00 u 

Fig. 2 

By virtue of (33), v~** = 0, and, by virtue of (40), 

V3, : - - - -  

I 

I I  

~ ) 3 .  ----" - - - -  

b 
/ /  / , ~  / / / / /  / / / / / /  / / /  / / /  

- lO0 -200  v 

D3 c, c~ 
(cosh 2z + cos 2z - 2y,)  - ~ [4A,~y4 + Bi(2y3 - ~y2)] + ~ (y~ - 1), 

2O 

D3 C1 C 2 
[4A](y4 + xy3) + BI(y2 - zyl)] - ? Y4, (sinh 2x - sin2x + 4y4) - ~"  

10 

D3 
(cosh 2x - c o s 2 x  + 4 y a ) -  ,-~-~[4Al(2y3 + xy2)+ 4Blxy4]- ~ Y3. 

5 I O  O 

Here Yk = yk(x). According to (27) and (36), we therefore have 
I! v3 = 03 + v3,, ~3 = (0~ + ~3,)/2, r = - c d 4 ,  (47) 

where ~3 = C31yl + Caay3 + Ca(1 - yz)/4, C31 = A31/A, Caa = Aa3/A, and Ca = Aa/A; A31, A33, and A3 
are calculated using (43). According to (39), J4 = -va.(#) ,  J2 = -v~.(#), and J3 = -v~.(#).  In accordance 
with (13) and (27), for the transverse velocity component we obtain 

~ ( x )  
2 u3(~) d~ = (48) 

0 

Thus, based on (6) and (7) and using the three approximations, we can take the following formulas as 
computational ones: 

u ~ u, Cx)/r + ~3 ( ~ ) / r  3, ~ ~ ~1(~) /~  + ~3(~) /~  3, r ~ r  ln~ + r  ~. (49) 

Here ul, ua, vl, va, r and Ca are found using formulas (44), (45), and (47). 
Determination of the explicit fifth, seventh, and higher-order approximations is a rather difficult 

problem and is omitted here. Nevertheless, in principle, high-order approximations could be found explicitly in 
accordance with the iterative approximation scheme considered above with the use of modern computers and 
algorithmic languages of symbolic programming. Numerical simulation offers the possibility of investigating 
the convergence of the iterative solution obtained using successive approximation. Figure 2 shows calculation 
results by formulas (43) and (49) with the values of A and q (Eckman and Rossby numbers, respectively), 
typical of the working hollows of plate separators or pressure disk devices. 

Numerical calculations have shown the presence of the points of inflection in the profiles of the 
circumferential and radial velocity components for A > ~r and the appearance of reversed flows for A > 2~r. 
etc. [5]. A quantitative comparison has shown that the maximum difference between the first and third 
approximations at a distance of 50 clearances from the axis of rotation is approximately 5% for the 
circumferential velocity v and 30% for the radial velocity u. 

The problem of convergence for expansions (6) and (7) is evidently of both practical and theoretical 
interest, because the proposed computational scheme realizes a solution to the full boundary-value problem 
(1)-(3). Let us estimate the convergence, for example, of the functional series for the circumferential velocity 
component (6) with r as a parameter. The largest absolute value of this component is reached in the middle 
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of the clearance between the disks. We then take 

v ( 0 ) =  Z:  v~-,-,(0) ~'-2' = F_.[c2,-, ,-'-~' (5o) 
, i 

as a majorant of the series. It is clear that  if the convergence of expansion (50) is proved, then the convergence 
of the series (6) is also proved. 

To simplify the problem, confining ourselves to small values of A with accuracy up to the third order 
and using the Krylov functions (35) we have approximately 

x4 zs z2 z6 x a z7 
yl = 1---~- ,  y e = x  30' y a -  2 180' y 4 =  6 1260 (51) 

Therefore, from (44)-(46) we obtain in the first approximation 

~, = ~(x~ - ~2)(z5 - 5U2)/A, u, = 6~(z 2 - ~2 ) /A ,  (52) 

where z : q/(48rr) and A = --#3/3. In addition, instead of formulas (43), we write approximately 

2 ,, 5 ~ r  + 5~%. . . / 24 ,  Anl = #3(8vn* + # vn* - (53) 
3 t n An3 # (3%, " = --/~vn,)/6 - #2vn**/2, An = (4#3vn, + 3#vn, - 3v : , ) / 3  + Vn**. 

From (41), (51), and (53) we have 

5/z 4 
C,d = - 144"--~ (/'t2 + 2g~ - 8(2)(/.t - ( ) f , (~ )  d~ + - ~  vn,,, 

0 ( 5 4 )  

2 
/z 

# 2  # 
1 J. 

g 

0 0 

n- -2  

Since, as follows from (30), the term - 2  ~'~(vivn-l-i + iuiun-l-i) contributes mainly, in the number 
i 

of terms, to the value of the function f . ( z ) ,  to simplify subsequent analysis of convergence, we further assume 
that  

~- -2  

A ~ - 2  ~ (0~.._1_~ + iu~ ._~_~) .  (55) 
i 

In addition, recalling the above assumption of the nondimensional  clearance A, we can replace (55) by the 
following approximate formula: 

(.-a)/2 
f . = - 2 ( n - 2 )  ~ uiu.-1-i. 

i 

In this case, from (52) we find up to the 4th order of smallness that  f3 = -2u21 = -72~2(g  2 - x2)2/A2. Using 
the formula 

/z 

f k!m[ k + m + l  
0 xk(~ - x)m & = (k + m + 1)! 

we then have, in accordance with (54), 

C33 = 

3!~2~II / I [  I!I! 2! 3! 4!) 
C31 - 2A-----Y- ~.+3-~-. -5~-15~.-8~ , 

6.3'~3/~9 ( I' I[i[ 2! 3') 36.3'~2#7( ~ ~ ~ ~) 
Aa --~+--~-. +5~+3~. , C3= A3 3 .+7 . +5 .+ . . 

(56) 
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The structure of the coefficients C,,l, C,,3, and C,, is also similar to relations (56) for the coefficients 
C31, C33, and C3 if the function fn(x) is defined by formula (55). 

In addition, 

(x _~)3 72~2 12" 3[e 2 (#4x4 #2xS 4!xS~ 
v3. = - -  6 A2 (#2_~2)2d~_  ~ -  \ ~. 2 . 2 ! ~ +  8! ]" 

0 

Hence, v3 = C31yl -I- C33y3 "4- C3(1 - yl)/4 + v3,. 
We thus take the approximate value of the majorant (50) in the form 

V(0)= ~ .  ~ ( I -~2+2~-8~2) (~ -~ ) f2 i - l (~ )d (  + - -  v2i-l,** r 1-2i 
t 0 

Although it follows from analysis of the expressions for the third (56) and subsequent approximations 
that the coefficients C2m+l,1, C2m+l,3, and C2m+l at m ~ ec form absolutely convergent numerical series, it is. 
however, difficult to estimate these series quantitatively. Evidently, the inequality l i m  IC2m+I/C2m-lt < r 2 
(r ~ cx~) is a consequence of their convergence. Therefore, the asymptotically uniform convergence of the 
series (6) is proved within the framework of the adopted assumptions. 

The question whether the solution of boundary-value problem (1)-(3) constructed by the scheme (6) 
and (7) is unique remains open. 

In conclusion, it should be mentioned that the kinetic characteristics of a steady divergent fluid flow in 
a hollow between two disks rotating with the same angular speed were determined experimentally by Adams 
and Rice et al. [9, 10] and Kohler [11]. For instance, the results of measurements of the pressure difference 
along the radius are given in [9, 10] for A -- 2.25 and q ~ 106, and the measurement data for the radial and 
circumferential velocity components are given in [11] for A = 4 and q ~ 10 s. In addition, there is satisfactory 
agreement between the calculation results in Fig. 2 and the experiments, both quantitatively and qualitatively. 
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